File 0140

Wiring Diagram Book

TRADEMARKS

COPYRIGHT NOTICE
PLEASE NOTE:

QWIK-STOP ${ }^{\circledR}$ and ALHPA-PAK ${ }^{\circledR}$ are registered trademarks of Square D. NEC ${ }^{\circledR}$ is a registered trademark of the National Fire Protection Association.
© 1993 Square D. All rights reserved. This document may not be copied in whole or in part, or transferred to any other media, without the written permission of Square D.
Electrical equipment should be serviced only by qualified electrical maintenance personnel, and this document should not be viewed as sufficient instruction for those who are not otherwise qualified to operate, service or maintain the equipment discussed. Although reasonable care has been taken to provide accurate and authoritative information in this document, no responsibility is assumed by Square D for any consequences arising out of the use of this material.
Standard Elementary Diagram Symbols 1-3
NEMA and IEC Markings and Schematic Diagrams 4
Control and Power Connection Table 4
Terminology 5
Examples of Control Circuits 6
2-Wire Control 6
3-Wire Control 6-9
Shunting Thermal Units During Starting Period 10
Overcurrent Protection for 3-Wire Control Circuits 11
AC Manual Starters and Manual Motor Starting Switches 12
Class 2510 12
Class 2511 and 2512 13
2-Speed AC Manual Starters and IEC Motor Protectors 14
Class 2512 and 2520 14
GV1/GV3 14
Drum Switches 15
Class 2601 15
DC Starters, Constant and Adjustable Speed 16
Class 7135 and 7136 16
Reversing DC Starters, Constant and
Adjustable Speed 17
Class 7145 and 7146 17
Mechanically Latched Contactors 18
Class 8196 18
Medium Voltage Motor Controllers 18-25
Class 8198 18-25
Solid State Protective Relays 26-27
Class 8430 26-27
General Purpose Relays 28
Class 8501 28
NEMA Control Relays. 29
Class 8501 and 9999 29
General Purpose Relays 30
Class 8501 30
Sensing Relays 30
RM2 LA1/LG1 30
IEC Relays 31-32
IEC D-Line Control Relays 31
Class 8501 32
Type P Contactors 33-35
Class 8502 33-35
Class 8702 35
Type T Overload Relays 33-35
Class 9065 33-35
Type S AC Magnetic Contactors 36-40
Class 8502 36-40
IEC Contactors 41-42
IEC Contactors and Auxiliary Contact Blocks 41
Input Modules and Reversing Contactors 42
Type S AC Magnetic Starters 43-50
Class 8536 43-50
8538 and 8539 45,49
1-Phase, Size 00 to 3 43
2-Phase and 3-Phase, Size 00 to 5 44
3-Phase, Size 6 45
3-Phase, Size 7 46
3-Phase Additions and Special Features 47-50
Integral Self-Protected Starters 51-57
Integral 18 State of Auxiliary Contacts 51-52
Integral 32 and 63 State of Auxiliary Contacts 53-54
Wiring Diagrams 55-57
Type S AC Combination Magnetic Starters 58-59
Class 8538 and 8539 58-59
3-Phase, Size 0-5 58
3-Phase Additions and Special Features 59
Reduced Voltage Controllers 60-66
Class 8606 Autotransformer Type 60-61
Class 8630 Wye-Delta Type 62-63
Class 8640 2-Step Part-Winding Type 64
Class 8647 Primary-Resistor Type 65
Class 8650 and 8651 Wound-Rotor Type 66
Solid State Reduced Voltage Starters 67
Class 8660 ALPHA PAK ${ }^{\circledR}$, Type MD-MG 67
Solid State Reduced Voltage Controllers 68-70
Class 8660 Type MH, MJ, MK and MM 68-70

Type S AC Reversing Magnetic Starters71-72
Class 873671-72
2- and 3-Pole71
3- and 4-Pole72
Type S AC 2-Speed Magnetic Starters73-76
Class 881073-76
Special Control Circuits75-76
Multispeed Motor Connections76-77
1- Phase76
3-Phase76-77

Programmable Lighting Controllers78

Class 886578
AC Lighting Contactors79-81
Class 890379-81
Load Connections79
Control Circuit Connections80
Panelboard Type Wiring81

Electronic Motor Brakes81-82

Class 8922 QWIK-STOP ${ }^{\circledR} 81-82$

Duplex Motor Controllers82

Class 894182
Fiber Optic Transceivers82
Class 900582
Photoelectric and Inductive Proximity Switches 83
Class 900683
Photoelectric and Proximity Sensors84-89
XS, XSC, XSF and XSD84
XS and XTA85
SG, ST and XUB86
XUM, XUH, XUG, XUL and XUJ87
XUE, XUR, XUD, XUG and XUE S88 XUV89

Limit Switches and Safety Interlocks90-92
Class 900791
XCK and MS92
Pressure Switches and Transducers93
Class 9012, 9013, 9022 and 902593
Level Sensors and Electric Alternators94
Class 9034 and 903994

Pneumatic Timing Relays and Solid State Industrial Timing Relays95-96

Class 905095-96

Timers97

Class 905097

Transformer Disconnects 98

Class 907098

Enclosure Selection Guide99

Conductor Ampacity and Conduit Tables100-101

Wire Data102

Electrical Formulas103-104

List of Tables

Table 1 Standard Elementary Diagram Symbols 1
Table 2 NEMA and IEC Terminal Markings 4
Table 3 NEMA and IEC Controller Markings and Elementary Diagrams 4
Table 4 Control and Power Connections for Across-the-Line Starters, 600 V or less 4
Table 5 Motor Lead Connections 64
Table 6 Enclosures for Non-Hazardous Locations 99
Table 7 Enclosures for Hazardous Locations 99
Table 8 Conductor Ampacity 100
Table 9 Ampacity Correction Factors 101
Table 10 Adjustment Factors 101
Table 11 Ratings for 120/240 V, 3-Wire, Single-Phase Dwelling Services 101
Table 12 AWG and Metric Wire Data 102
Table 13 Electrical Formulas for Amperes, Horsepower, Kilowatts and KVA 103
Table 14 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for Nonplugglng and Nonjogging Duty 103
Table 15 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for PlugStop, Plug-Reverse or Jogging Duty 104
Table 16 Power Conversions 104

The diagram symbols in Table 1 are used by Square D and, where applicable, conform to NEMA (National Electrical Manufacturers Association) standards.

Table 1 Standard Elementary Diagram Symbols

Table 1 Standard Elementary Diagram Symbols (cont'd)

Standard Elementary Diagram Symbols

Table 1 Standard Elementary Diagram Symbols (cont'd)

Table 2 NEMA and IEC Terminal Markings

NEMA				
Alphanumeric, corresponding to incoming line and motor terminal designations Power Terminals	No specific marking Control Terminals		 No standard designation Coil Terminals	
IEC				
$\frac{\perp}{T} \quad \frac{1}{T} \quad \frac{1}{T}$ Single digit numeric, odd for supply lines, even for load connections Power Terminals	2-digit numeric, 1st designates sequence, 2nd designates function (1-2 for N.C., 3-4 for N.O.) Control Terminals	One Winding	Coil Terminals	 A2 B2 Two Windings

Table 3 NEMA and IEC Controller Markings and Elementary Diagrams

NEMA	
Typical Controller Markings	Typical Elementary Diagram
IEC	
Typical Controller Markings	Typical Elementary Diagram

Table 4 Control and Power Connections for Across-the-Line Starters, 600 V or less (From NEMA standard ICS 2-321A.60)

	1-Phase	2-Phase, 4-Wire	3-Phase
Line Markings	$\mathrm{L} 1, \mathrm{~L} 2$	$\mathrm{~L} 1, \mathrm{~L} 3:$ Phase 1	
$\mathrm{L} 2, \mathrm{~L} 4:$ Phase 2			

WIRING DIAGRAM

A wiring diagram shows, as closely as possible, the actual location of all component parts of the device. The open terminals (marked by an open circle) and arrows represent connections made by the user.

Since wiring connections and terminal markings are shown, this type of diagram is helpful when wiring the device or tracing wires when troubleshooting. Bold lines denote the power circuit and thin lines are used to show the control circuit. Black wires are conventionally used in power circuits and red wire in control circuits for AC magnetic equipment.

A wiring diagram is limited in its ability to completely convey the controller's sequence of operation. The elementary diagram is used where an illustration of the circuit in its simplest form is desired.

ELEMENTARY DIAGRAM

An elementary diagram is a simplified circuit illustration. Devices and components are not shown in their actual positions. All control circuit components are shown as directly as possible, between a pair of vertical lines representing the control power supply. Components are arranged to show the sequence of operation of the devices and how the device operates. The effect of operating various auxiliary contacts and control devices can be readily seen. This helps in troubleshooting, particularly with the more complex controllers.

This form of electrical diagram is sometimes referred to as a "schematic" or "line" diagram.

Examples of Control Circuits

2- and 3 -Wire Control

Elementary Diagrams

Low Voltage Release and Low Voltage Protection are the basic control circuits encountered in motor control applications. The simplest schemes are shown below. Other variations shown in this section may appear more complicated, but can always be resolved into these two basic schemes.

Note:The control circuits shown in this section may not include overcurrent protective devices required by applicable electrical codes. See page 11 for examples of control circuit overcurrent protective devices and their use.

Low voltage release is a 2 -wire control scheme using a maintained contact pilot device in series with the starter coil.
This scheme is used when a starter is required to function automatically without the attention of an operator. If a power failure occurs while the contacts of the pilot device are closed, the starter will drop out. When power is restored, the starter will automatically pickup through the closed contacts of the pilot device.
The term " 2 -wire" control is derived from the fact that in the basic circuit, only two wires are required to connect the pilot device to the starter.

2-Wire Control:

Maintained Contact Hand-OFF-Auto Selector Switch

FIG. 3

A Hand-Off-Auto selector switch is used on 2-wire control applications where it is desirable to operate the starter manually as well as automatically. The starter coil is manually energized when the switch is turned to the Hand position and is automatically energized by the pilot device when the switch is in the Auto position.

Low voltage protection is a 3-wire control scheme using momentary contact push buttons or similar pilot devices to energize the starter coil.
This scheme is designed to prevent the unexpected starting of motors, which could result in injury to machine operators or damage to the driven machinery. The starter is energized by pressing the Start button. An auxiliary holding circuit contact on the starter forms a parallel circuit around the Start button contacts, holding the starter in after the button is released. If a power failure occurs, the starter will drop out and will open the holding circuit contact. When power is restored, the Start button must be operated again before the motor will restart.
The term " 3 -wire" control is derived from the fact that in the basic circuit, at least three wires are required to connect the pilot devices to the starter.

3-Wire Control:

Push-to-Test Pilot Light Indicates when Motor is Running
FIG. 3

When the Motor Running pilot light is not lit, there may be doubt as to whether the circuit is open or whether the pilot light bulb is burned out. To test the bulb, push the color cap of the Push-to-Test pilot light.

3-Wire Control:
 Fused Control Circuit Transformer and Control Relay

FIG. 6

A starter coil with a high VA rating may require a control transformer of considerable size. A control relay and a transformer with a low VA rating can be connected so the normally-open relay contact controls the starter coil on the primary or line side. Square D Size 5 Combination Starter Form F4T starters use this scheme.

Examples of Control Circuits

3-Wire Control

Elementary Diagrams

Jogging: Selector Switch and Start Push Button

FIG. 1

Jogging, or inching, is defined by NEMA as the momentary operation of a motor from rest for the purpose of accomplishing small movements of the driven machine. One method of jogging is shown above. The selector switch disconnects the holding circuit contact and jogging may be accomplished by pressing the Start push button.

Jogging: Control Relay
FIG. 3

When the Start push button is pressed, the control relay is energized, which in turn energizes the starter coil. The normallyopen starter auxiliary contact and relay contact then form a holding circuit around the Start push button. When the Jog push button is pressed, the starter coil is energized (independent of the relay) and no holding circuit forms, thus jogging can be obtained.

Jogging: Control Relay for Reversing Starter
FIG. 4

This control scheme permits jogging the motor either in the forward or reverse direction, whether the motor is at standstill or rotating. Pressing the Start-Forward or Start-Reverse push button energizes the corresponding starter coil, which closes the circuit to the control relay.The relay picks up and completes the holding circuit around the Start button. As long as the relay is energized, either the forward or reverse contactor remains energized. Pressing either Jog push button will deenergize the relay, releasing the closed contactor. Further pressing of the Jog button permits jogging in the desired direction.

3 -wire control of a reversing starter can be implemented with a Forward-Reverse-Stop push button station as shown above. Limit switches may be added to stop the motor at a certain point in either direction. Jumpers 6 to 3 and 7 to 5 must then be removed.

3-Wire Control: Reversing Starter Multiple Push Button Station

FIG. 1

More than one Forward-Reverse-Stop push button station may be required and can be connected in the manner shown above.

3-Wire Control:
 2-Speed Starter

FIG. 3

3 -wire control of a 2 -speed starter with a High-Low-Stop push button station is shown above. This scheme allows the operator to start the motor from rest at either speed or to change from low to high speed. The Stop button must be operated before it is possible to change from high to low speed. This arrangement is intended to prevent excessive line current and shock to motor and driven machinery, which results when motors running at high speed are reconnected for a lower speed.

Plugging:
Plugging a Motor to a Stop from 1 Direction Only
FIG. 5

Plugging is defined by NEMA as a braking system in which the motor connections are reversed so the motor develops a counter torque, thus exerting a retarding force. In the above scheme, forward rotation of the motor closes the normally-open plugging switch contact and energizing control relay CR. When the Stop push button is operated, the forward contactor drops out, the reverse contactor is energized through the plugging switch, control relay contact and normally-closed forward auxiliary contact. This reverses the motor connections and the motor is braked to a stop. The plugging switch then opens and disconnects the reverse contactor. The control relay also drops out. The control relay makes it impossible for the motor to be plugged in reverse by rotating the motor rotor closing the plugging switch. This type of control is not used for running in reverse.

3-Wire Control: Reversing Starter w/ Pilot Lights to Indicate Motor Direction
FIG. 2

Pilot lights may be connected in parallel with the forward and reverse contactor coils, indicating which contactor is energized and thus which direction the motor is running.

3-Wire Control: 2-Speed Starter w/ 1 Pilot Light to

 Indicate Motor Operation at Each SpeedFIG. 4

One pilot light may be used to indicate operation at both low and high speeds. One extra normally-open auxiliary contact on each contactor is required. Two pilot lights, one for each speed, may be used by connecting pilot lights in parallel with high and low coils (see reversing starter diagram above).

Anti-Plugging: Motor to be Reversed but Must Not be Plugged

FIG. 6

Anti-plugging protection is defined by NEMA as the effect of a device that operates to prevent application of counter-torque by the motor until the motor speed has been reduced to an acceptable value. In the scheme above, with the motor operating in one direction, a contact on the anti-plugging switch opens the control circuit of the contactor used for the opposite direction. This contact will not close until the motor has slowed down, after which the other contactor can be energized.

Examples of Control Circuits

Shunting Thermal Units During Starting Period Elementary Diagrams

Shunting Thermal Units During Starting Period

Article 430-35 of the NEC describes circumstances under which it is acceptable to shunt thermal units during abnormally long accelerating periods.

430-35. Shunting During Starting Period.

(a) Nonautomatically Started. For a nonautomatically started motor, the overload protection shall be permitted to be shunted or cut out of the circuit during the starting period of the motor if the device by which the overload protection is shunted or cut out cannot be left in the starting position and if fuses or inverse time circuit breakers rated or set at not over 400 percent of the full-load current of the motor are so located in the circuit as to be operative during the starting period of the motor.
(b) Automatically Started. The motor overload protection shall not be shunted or cut out during the starting period if the motor is automatically started.

Exception. The motor overload protection shall be permitted to be shunted or cut out during the starting period on an automatically started motor where:
(1) The motor starting period exceeds the time delay of available motor overload protective devices, and
(2) Listed means are provided to:
a. Sense motor rotation and to automatically prevent the shunting or cut out in the event that the motor fails to start, and
b. Limit the time of overload protection shunting or cut out to less than the locked rotor time rating of the protected motor, and
c. Provide for shutdown and manual restart if motor running condition is not reached.

Figures 1 and 2 show possible circuits for use in conjunction with 3 -wire control schemes. Figure 1 complies with NEC requirements. Figure 2 exceeds NEC requirements, but the additional safety provided by the zero speed switch might be desirable.
Figure 3 shows a circuit for use with a 2 -wire, automatically started control scheme that complies with NEC requirements. UL or other listed devices must be used in this arrangement.

Examples of Control Circuits Overcurrent Protection for 3-Wire Control Circuits

Elementary Diagrams

| 3-Wire Control: |
| :---: | :---: |
| Fusing in 1 Line Only |

FIG. 1

Common control with fusing in one line only and with both lines ungrounded or, if user's conditions permit, with one line grounded.

| | 3-Wire Control:
 Fusing in Both Primary Lines |
| :--- | :--- | :--- |
| Constrol circuit transformer with fusing in both primary lines, no | |
| secondary fusing and all lines ungrounded. | |

3-Wire Control:
Fusing in Both Primary Lines and 1 Secondary Line

FIG. 5

Control circuit transformer with fusing in one secondary line and both primary lines, with one line grounded.

AC Manual Starters and Manual Motor Starting Switches

FIG. 6

AC 2-Speed Manual Motor Starting Switches:
Class 2512 Type K

2-Speed AC Manual Starters and IEC Motor Protectors

Class 2512 and 2520 and Telemecanique GV1/GV3

FIG. 2 C

IEC Manual Starters: GV1/GV3		
	Telemecanique	
FIG. 5 GV3 M• Motor Protector	FIG. 6	FIG. 7
FIG. 8		
GV3 A0• Fault Signalling Contacts	GV3 Voltage Trips	GV1 A0• Contact Block

DC Starters, Constant and Adjustable Speed Class 7135 and 7136

Adjustable Speed DC Starter: Class 7136
FIG. 2

Acceleration Contactors: Class 7135, 7136, 7145 and 7146					
NEMA Size	1	2	3	4	5
No. of Acceleration Contactors	1	2	2	2	3

Mechanically Latched Contactors and Medium Voltage Motor Controllers

 Class 8196 and 8198

Medium Voltage Motor Controllers
 Class 8198

Medium Voltage Motor Controllers

Class 8198

Medium Voltage Motor Controllers Class 8198

\square Werkspond

Medium Voltage Motor Controllers

Class 8198

Solid State Protective Relays
 Class 8430

General Purpose Relays

Class 8501

Control Relays: Class 8501 Type CO and CDO					
FIG. 1 엉 Type CO6 and CDO6	FIG. 2 $\begin{aligned} & 00 \\ & \frac{1}{T} \frac{1}{1} \end{aligned}$ Type CO7 and CDO7	FIG. 3 Type CO8 and CDO8	FIG. 4 Type CO21 and CDO21	FIG. 5 Type CO15 and CDO15	FIG. 6 Type CO16, CDO16, CO22 and CDO22

Control Relays: Class 8501 Type K		
FIG. 8 Type KL	FIG. 9 Type KU, KF, KX, KUD, KFD and KXD 2-Pole	FIG. 10 Type KP and KPD 2-Pole
FIG. 11 Type KLD	FIG. 12 Type KU, KF, KX, KUD, KFD and KXD 3-Pole	FIG. 13 Type KP and KPD 3-Pole

10 A Control Relay w/ Convertible Contacts:
Class 8501 Type X
FIG. 1

MOUNTING SLOT ${ }_{1}^{\text {- }}$

* Note: Class 8501 Type XO....XL, XDO....XL, XDO....XDL and XO $\cdots \times$ XDL latch relays use the same diagram except for the addition of an unlatch coil (8 poles maximum).

Timer Attachment:
Class 9999 Type XTD and XTE
FIG. 2

POLE \#13 POLE \#14

Note: All contacts are convertible.

No. of	Class Timed Contacts	$\|c\|$ 9999 Type	13
2	Pole No. XTD XTE	O	14

* $\mathrm{O}=$ N.O. Contact

1 = N.C. Contact

General Purpose Relays and Sensing Relays
Class 8501 and Telemecanique RM2 LA1/LG1

Control Relays: CA2 and CA3		
FIG. 1 FIG. 2 4 N.O. Instantaneous CA2 DN40 and CA3 DN40 CA2 DN31 an	FIG. 2 3 N.O. \& 1 N.C. Instantaneous CA2 DN31 and CA3 DN31	FIG. 3 2 N.O. \& 2 N.C. Instantaneous CA2 DN22 and CA3 DN22
FIG. 4 2 N.O. \& 2 N.C. Instantaneous, w/ 2 Make-Before-Break CA2 DC22 and CA3 DC22	FIG. 5 $2 \text { N.O. \& } 2 \text { N }$	Instantaneous w/ Mechanical Latch 2 DK22 and CA3 DK22

Front-Mounted Damp- and Dust-Protected Instantaneous Auxiliary Contact Blocks: LA1

FIG. 15 2 N.O. LA1 DX20	FIG. 16 2 N.O. w/ Grounding Screw LA1 DY20	FIG. 17 2 Dusttight N.O. \& 2 N.O. LA1 DZ40	FIG. 18 2 Dusttight N.O. \& 1 N.O. \& 1 N.C. LA1 DZ31

Front-Mounted Time Delay Auxiliary Contacts: LA2 and LA3

FIG. 19	FIG. 20	FIG. 21
On Delay, 1 N.O. \& 1 N.C. LA2 DT	On Delay, 1 N.C. w/ 1 Offset N.O. LA2 DS	Off Delay, 1 N.O. \& 1 N.C. LA3 DR

Front-Mounted Mechanical Latch Adder Blocks: LA6

Side-Mounted Auxiliary Contact Blocks: LA8

	FIG. 25
1 N.O. \& 1 N.C. Instantaneous LA8 DN11	2 N.O. Instantaneous LA8 DN20

Type P Contactors and Type T Overload Relays Class 8502 and 9065

Coil Terminals	
FIG. 2	
Coil terminals are designated by a letter and a number. Terminals	
for a single winding coil are designated "A1" and "A2".	

Auxiliary Contact Terminals

FIG. 3

Overload Relay Contact Terminals
FIG. 4
$\begin{array}{cc}95 & 97 \\ i & 9 \\ 7 & 0 \\ 96 & 98\end{array}$
With Isolated
N.O. Alarm Contact
$\stackrel{1}{7}$
With Non-Isolated
N.O. Alarm Contact

Overload contact terminals are marked with two digits. The first digit is " 9 ". The second digits are " 5 " and " 6 " for a N.C. and " 7 " and " 8 " for a N.O. isolated contact. If the device has a non-isolated alarm contact (single pole), the second digits of the N.O. terminals are " 5 " and " 8 ".
Auxiliary contacts on contactors, relays and push button contacts use 2-digit terminal designations, as shown in the diagram above. The first digit indicates the location of the contact on the device. The second digit indicates the status of the contacts, N.O. or N.C. "1" and " 2 " indicate N.C. contacts. " 3 " and " 4 " indicate N.O. contacts.

Class 8502 Type PD or PE Contactor

w/ Class 9065 Type TR Overload Relay

FIG. 5

Wiring Diagram

Elementary Diagram

Type P Contactors and Type T Overload Relays

Class 8502 and 9065

Type S AC Magnetic Contactors
Class 8502
FIG. 1

Type S AC Magnetic Contactors

Size 6, 3-Pole Contactor - Separate Control

Class 8502 Type SH Form S Series B
FIG. 1

Wiring Diagram

This symbol denotes the coil function, provided by a solid-state control module, 30 VA transformer, two fuses in the secondary of the transformer, N.C. electrical interlock and DC magnet coil.

Short-Circuit Protection	
Rating of branch circuit protective device must comply with applicable electrical codes and the following limitations:	
Type of Device	Max. Rating
Class K5 or RK5 time-delay fuse	600 A
Class J, T or L fuse	1200 A
Inverse-time circuit breaker	800 A

Elementary Diagram

Type S AC Magnetic Contactors

3- and 4-Pole Contactors: LC1 and LP1 (Terminal markings conform to standards EN 50011 and 50012)		
FIG. 1 D09 10 to D32 10	FIG. 2 D09 01 to D32 01	FIG. 3 $\text { D40 } 11 \text { to D95 } 11$
FIG. 4 D12 004 to D80 004	FIG. 5 D12 008 and D25 008	FIG. 6 D40 008 to D80 008

Front-Mounted Standard Instantaneous Auxiliary Contact Blocks: LA1

Front-Mounted Time Delay Auxiliary Contacts: LA2 and LA3		
FIG. 22	FIG. 23	
On Delay, 1 N.O. \& 1 N.C. LA2 DT•	On Delay, 1 N.O. w/ 1 Offset N.O. LA2 DS•	Off Delay, 1 N.O. \& 1 N.C. LA3 DR•

Side-Mounted Auxiliary Contact Blocks: LA8	
FIG. 27	FIG. 28
1 N.O. \& 1 N.C. Instantaneous LA8 DN 11	2 N.O. Instantaneous LA8 DN 20

3-Pole, 3-Phase Magnetic Starters, Size 00 to 3, Connected for Single Phase: Class 8536 Type S
FIG. 3

Wiring Diagram

Elementary Diagram

Type S AC Magnetic Starters

Class 8536

2-Phase and 3-Phase, Size 00 to 5

3-Pole, 3-Phase Magnetic Starters, Size 6 - Common Control

 Class 8536/8538/8539 Type SH Series BFIG. 1

Wiring Diagram

This symbol denotes the coil function, provided by a solid-state control module, 30 VA transformer, two fuses in the secondary of the transformer, N.C. electrical interlock and DC magnet coil.

Type S AC Magnetic Starters

Class 8536

3-Phase, Size 7

3-Pole, 3-Phase Magnetic Starters, Size 7 - Common Control
Class 8536 Type SJ Series A

(

Type S AC Magnetic Starters

Class 8536
3-Phase Additions and Special Features

3-Pole, 3-Phase Magnetic Starters, Size 00 to 4:
Class 8536 Type S
FIG. 1

FIG. 2

Marked "OL" if alarm contact is supplied
On NEMA Size 3 and 4 starters, holding circuit contact is in position \#1. Max. of 3 external auxiliary contacts on NEMA Size 00.

Wiring Diagram

Elementary Diagram

Form X - Additional Auxiliary Contacts

3-Pole, 3-Phase Magnetic Starters, Size 5:
 Class 8536 Type S

FIG. 3

* Marked "OL" if alarm contact is supplied
Δ If alarm contact is supplied, a single (3 thermal unit) overload block is furnished, fed from 3 current transformers

Wiring Diagram
Elementary Diagram
Form F4T - Control Circuit Transformer and Primary Fuses

3-Pole, 3-Phase Magnetic Starters, Size 6 - Separate Control

Class 8536/8538/8539 Type SH Form S Series B
FIG. 1

Wiring Diagram

Type S AC Magnetic Starters

Class 8536

3-Phase Additions and Special Features

State of Auxiliary Contacts for LD1											
FIG. 1 LD1Contact openContact closed		Auxiliary contact actuators									
			$\stackrel{\text { I» }}{\stackrel{\square}{\square}}$	$\stackrel{\square}{\square}$	$\stackrel{\text { I» }}{\square}$		$\stackrel{I>}{\square}$		$\begin{gathered} \text { AUTO }+0 \\ \vdots \\ i, \end{gathered}$		I>
		Auxiliary contacts									
		LA1-LB015		LA1-LB017		LA1-LB019		LA1- LB001	$\begin{aligned} & \text { LA1- } \\ & \text { LB031 } \end{aligned}$	LA1-LB034	
		$\begin{gathered} 132331 \\ 11 \\ y^{-}-1 \quad 1 \\ 142432 \end{gathered}$	$\begin{gathered} 95 \\ 4 \\ 4 \\ \hline 96 \\ 98 \end{gathered}$	$\begin{array}{cc} 13 & 31 \\ 1 & 4 \\ y_{14} & -4 \\ 14 & 32 \end{array}$	$\begin{aligned} & 97 \\ & \rangle_{98}^{1} \end{aligned}$	$\begin{array}{cc} 13 & 31 \\ 1 & 4 \\ - & -4 \\ 14 & 14 \end{array}$	$\begin{gathered} 95 \\ 4 \\ 4 \\ 96 \end{gathered}$	$\begin{gathered} 41 \\ 42 \end{gathered}$	$\left.\left.\left.\right\|_{15} ^{16}\right\|_{17} ^{1}\right\|^{1}-\left.\right\|^{\prime}$	$\left.\right\|_{15} ^{16} 18$	$\begin{array}{ll} 6 \\ 4 & y_{7}^{8} \\ 5 & 1 \end{array}$
	Off	132331 142432	$\begin{aligned} & 9597 \\ & 9698 \end{aligned}$	$\square_{14}^{13} \quad 31$	97 \square 98	13 \square 14	$\begin{gathered} 95 \\ \square \end{gathered}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	1618 \square \square 1517	1618 \square \square 1517	$\square_{5}^{6} \underset{7}{\square}$
	On, contactor open	$\frac{132331}{\square} \frac{\square}{142432}$	$\begin{aligned} & 9597 \\ & 9698 \end{aligned}$	$\square_{14}^{13} 31$	$\begin{array}{r}97 \\ \square \\ \hline 98\end{array}$	$\square_{14}^{13} \stackrel{31}{\square_{3}}$	$\begin{aligned} & 95 \\ & \square \end{aligned}$	$\begin{gathered} 41 \\ 42 \end{gathered}$	$\begin{aligned} & 1618 \\ & 1517 \end{aligned}$	$\begin{aligned} & 1618 \\ & 1517 \end{aligned}$	${ }_{5}^{6} \underset{7}{\square} \square_{7}^{8}$
	On, contactor closed	132331 142432	$\begin{aligned} & 9597 \\ & 9698 \end{aligned}$	$\stackrel{13}{14} \stackrel{31}{\square} \stackrel{\square}{32}$	97 \square 98	13 \square 14	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	41 \square 42	$\begin{aligned} & 1618 \\ & 1517 \end{aligned}$	$\begin{gathered} 1618 \\ 1517 \end{gathered}$	$\square_{5}^{6} \underset{7}{\square}$
	Tripped on overload IRIP. >0	132331 142432	9597 \square 9698	$\square_{14}^{13} \quad 31$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	13 \square 14	95 \square 96	$\underset{42}{41}$	$\begin{aligned} & 16 \quad 18 \\ & \square \square \\ & \square \\ & 1517 \end{aligned}$	$\stackrel{1618}{\square_{15}^{16}}$	$\square_{5}^{6} \underset{7}{8}$
		132331 \square 142432	$\begin{array}{r}9597 \\ \square \\ \hline 9698\end{array}$	13 31 \square 14 32	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	13 \square \square	95 \square 96	$\stackrel{41}{\square}$	$\begin{aligned} & 16 \quad 18 \\ & \square \\ & \square \\ & \hline 1517 \end{aligned}$	1618 $\begin{aligned} & \square \\ & 1517 \end{aligned}$	$\square_{5}^{6} \square_{7}^{8}$
	Off after short circuit	132331 142432	9597 \square 9698	$\square_{14}^{13} \quad 31$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	13 \square 14	$\begin{aligned} & 95 \\ & \square \\ & 96 \end{aligned}$	41 \square 42	$\begin{aligned} & 16 \quad 18 \\ & \square_{1517}^{\square} \end{aligned}$	$\begin{aligned} & 1618 \\ & \square \\ & \square \\ & 1517 \end{aligned}$	${ }_{\square}^{\square} \square_{5}^{6} \square_{7}^{8}$
		$\begin{aligned} & 132331 \\ & \square \\ & \square \\ & 142432 \end{aligned}$	$\begin{aligned} & 9597 \\ & 9698 \end{aligned}$	\square_{14}^{13}	$\begin{array}{r}97 \\ \square \\ \hline 98\end{array}$	13 \square 14	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{gathered} 41 \\ \square \\ \square \end{gathered}$	1618 \square \square 1517	1618 \square \square 1517	$\square_{5}^{6} \stackrel{\square}{7}_{\square}^{8}$

\square Werksynd

State of Auxiliary Contacts for LD4										
FIG. 1	LD4 Contact open Contact closed LD4	Auxiliary contact actuators								
				I》)	$I>$ \square $\bar{I}>$ - $U<$ 1 $-\eta$		[I》-	$I\rangle$ \square -1 $\bar{I}>$ 1 $U<$ 1 $-Z$		$)^{ \pm} t^{1}{ }^{1}$
		Auxiliary contacts								
		LA1-LC010				LA1-LC012			LA1-LC020	LA1-LC030
		$\begin{gathered} 132331 \\ 111 \\ y^{-}-y^{-}-7 \\ 142432 \end{gathered}$	$\left.\right\|_{15} ^{1618}$	$\begin{gathered} 0608 \\ 4_{0}^{1} \end{gathered}$	\ddagger_{95}^{9698}	$\begin{gathered} 132331 \\ 1 \\ y_{14}-\left.\right\|_{-1}-1 \end{gathered}$	$\left.\right\|_{05} ^{08}$	$\begin{gathered} 98 \\ { }_{95}^{\prime} \end{gathered}$	$\begin{gathered} 132331 \\ 11 \\ y^{-}-1^{-}-7 \\ 142432 \end{gathered}$	$\begin{gathered} (63) \\ 53 \\ { }^{\prime} \\ 1 \\ 1^{2} \\ 54 \\ (64) \\ \hline \end{gathered}$
	Off + isolation	132331 $\square \square$ 142432	1618 \square 15	0608 \square	9698 \square 95	$\begin{aligned} & \frac{132331}{\mid \square} \\ & \hline 142432 \end{aligned}$	08 \square	$\begin{aligned} & 98 \\ & \square \\ & \square 9 \end{aligned}$	$\begin{gathered} 132331 \\ \square \\ \square \end{gathered}$	$\begin{aligned} & 53 \\ & \square \\ & 54 \end{aligned}$
	Off	$\frac{132331}{\left.\right\|_{142432} ^{1}}$	1618 \square 15	$\begin{gathered} 0608 \\ \square \\ \hline \square \end{gathered}$	$\begin{aligned} & 9698 \\ & \square \\ & \hline \square 5 \end{aligned}$	$\begin{aligned} & \frac{132331}{\mid 14} \\ & 142432 \end{aligned}$	08 \square 05	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$	$\begin{gathered} 132331 \\ \square \\ 142432 \end{gathered}$	$\begin{gathered} 53 \\ 54 \end{gathered}$
	On, contactor open	$\begin{aligned} & 132331 \\ & \frac{\square}{142432} \end{aligned}$	$\begin{array}{r} 1618 \\ \hline \square \end{array}$	$\begin{gathered} 0608 \\ \square \\ \hline \square \end{gathered}$	$\begin{aligned} & 9698 \\ & \hline \\ & \hline 95 \end{aligned}$	$\begin{aligned} & 132331 \\ & \frac{142432}{\mid 142} \end{aligned}$	08 \square 05	$\begin{aligned} & 98 \\ & \square \\ & \square 9 \end{aligned}$	$\begin{aligned} & 132331 \\ & \frac{\square}{142432} \end{aligned}$	$\begin{gathered} 53 \\ \\ 54 \end{gathered}$
	On, contactor closed	$\begin{array}{r} 132331 \\ \begin{array}{\|} 142432 \end{array} \end{array}$	$\begin{array}{r} 1618 \\ \square \\ \hline \end{array}$	$\begin{gathered} 0608 \\ \square \\ \hline \square \end{gathered}$	$\begin{aligned} & 9698 \\ & \square \\ & \hline \square 5 \end{aligned}$	$\begin{gathered} 132331 \\ 142432 \end{gathered}$	$\begin{array}{r}08 \\ \square \\ \hline 05\end{array}$	$\begin{array}{r}98 \\ \square \\ \hline 95\end{array}$	$\begin{gathered} 132331 \\ 142432 \end{gathered}$	$\begin{gathered} 53 \\ 54 \end{gathered}$
	Tripped, on overload	$\begin{aligned} & 132331 \\ & \mid \square \\ & \mid 42432 \end{aligned}$	1618 \square 15	$\begin{gathered} 0608 \\ \square \\ \hline \square \end{gathered}$	9698 \square 95	$\begin{aligned} & 132331 \\ & \mid 142432 \end{aligned}$	08 \square \square	$\begin{aligned} & 98 \\ & 95 \end{aligned}$	$\frac{132331}{\square} \underset{142432}{\square}$	$\begin{aligned} & 53 \\ & \hline \end{aligned}$
	Off, after overload	$\begin{aligned} & \frac{132331}{\square} \\ & 142432 \end{aligned}$	1618 \square 15	$\begin{gathered} 0608 \\ \square \\ \hline \square \end{gathered}$	$\begin{array}{r}9698 \\ \square \\ \hline\end{array}$	$\begin{aligned} & 132331 \\ & \square \\ & 142432 \end{aligned}$	$\begin{array}{r}08 \\ \square \\ \hline 05\end{array}$	$\begin{array}{r}98 \\ \square \\ \hline 95\end{array}$	$\frac{132331}{\square} \underset{142432}{\square}$	$\begin{aligned} & 53 \\ & 54 \end{aligned}$
	Tripped, on short circuit	$\frac{132331}{\square}$	1618 \square 15	0608 \square 05	9698 \square 95	$\begin{aligned} & 132331 \\ & \mid 142432 \end{aligned}$	${ }_{0}^{08}$	$\begin{aligned} & 98 \\ & 95 \end{aligned}$	$\frac{132331}{\square} \underset{142432}{\square}$	$\begin{aligned} & 53 \\ & 54 \end{aligned}$
	Off, after short circuit	$\begin{aligned} & 132331 \\ & \square \\ & \square \\ & \hline 142432 \end{aligned}$	1618 \square 15	0608 \square 05	$\begin{aligned} & 9698 \\ & \square \\ & 95 \end{aligned}$	$\frac{132331}{\square}$	$\begin{gathered} 08 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r}98 \\ \square \\ \hline 95\end{array}$	$\begin{gathered} 132331 \\ \square \\ 142432 \end{gathered}$	$\begin{aligned} & 53 \\ & \hline \end{aligned}$
		$\begin{aligned} & 132331 \\ & \square \\ & \square \\ & \hline 142432 \end{aligned}$	1618 \square 15	$\begin{gathered} 0608 \\ \square \\ \hline 05 \end{gathered}$	$\begin{gathered} 9698 \\ \square \\ \hline \square 5 \end{gathered}$	$\begin{aligned} & \frac{132331}{\mid \square} \\ & \hline 142432 \end{aligned}$	$\stackrel{08}{\square}$	98 \square 95	$\frac{132331}{\square}$	$\begin{gathered} 53 \\ 54 \end{gathered}$

Integral Self-Protected Starters
Integral 32 and 63
State of Auxiliary Contacts

State of Auxiliary Contacts for LD5
FIG. 1

LD5	Auxiliary contact actuators									
		$\left\lvert\, \begin{array}{rr}\text { AUTO }+ \\ \\ i & \prime \\ \\ 1\end{array}\right.$	IT)-		$\frac{1}{11}$	IT)-	$I\rangle$ \square $I>$ $I>$ $U<$ $-\square$	$\frac{1}{11}$		$\sum^{1} t^{-1}$
	Auxiliary contacts									
	LA1-LC010				LA1-LC012			LA1-LC020	LA1-LC021	LA1-LC031
	$\begin{gathered} 132331 \\ 11 \\ y_{1}^{-7^{-7}} \\ 142432 \end{gathered}$	$\left.\right\|_{15} ^{1618}$	$\begin{gathered} 0608 \\ 4_{0}^{\prime} \\ 05 \end{gathered}$	$\begin{gathered} 9698 \\ 41 \\ 95 \end{gathered}$	$\begin{gathered} 132331 \\ 1 \\ 1^{-} 1 \\ 7_{1}^{-4} \\ 142432 \end{gathered}$	$\left.\right\|_{05} ^{08}$	$\left.\right\|_{95} ^{98}$	$\begin{gathered} 132331 \\ 111 \\ y^{-}-17 \\ 142432 \end{gathered}$	$\begin{gathered} 132331 \\ 111 \\ y_{1}^{-t^{-}}-1 \\ 142432 \end{gathered}$	
Off + isolation	$\begin{array}{\|c\|} 132331 \\ \square \\ \square \\ \hline 142432 \end{array}$	$\frac{1618}{\square}$	${ }_{05}^{0608}$					$\begin{gathered} 132331 \\ \square \\ \square \end{gathered}$		$\begin{aligned} & \square_{54}^{53} 63 \\ & \square \square \end{aligned}$
01				$\begin{gathered} 9698 \\ \hline \square 5 \end{gathered}$	$\frac{132331}{\square}$	$\begin{aligned} & 08 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$		$\begin{gathered} 132331 \\ \square \\ 142432 \end{gathered}$	
Off	$\left\lvert\, \begin{array}{\|c} 132331 \\ \mid \\ \hline 142432 \end{array}\right.$	$\frac{1618}{\square}$	$\begin{aligned} & 0608 \\ & \square \\ & 05 \end{aligned}$							
				$\begin{gathered} 9698 \\ \square \\ \hline 95 \end{gathered}$	$\begin{aligned} & 132331 \\ & \hline 142432 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 08 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & \square 5 \end{aligned}$	$\begin{aligned} & 132331 \\ & \frac{\square}{142432} \end{aligned}$	$\begin{aligned} & 132331 \\ & \frac{1}{142432} \end{aligned}$	$\begin{aligned} & 5363 \\ & 54 \quad 64 \end{aligned}$
On, both contactors open	$\begin{array}{\|c} 132331 \\ \mid 1 \\ 142432 \end{array}$									
01		$\stackrel{1618}{15}$	$\begin{gathered} 0608 \\ \square \\ 05 \end{gathered}$	$\begin{gathered} 9698 \\ \hline 95 \end{gathered}$	$\begin{aligned} & 132331 \\ & \mid \square \\ & \hline 142432 \end{aligned}$	$\begin{aligned} & 08 \\ & \square \\ & 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$	$\frac{132331}{\square} \underset{142432}{ }$	$\frac{132331}{\square}$	$\begin{array}{r} 5363 \\ \hline \\ 5464 \end{array}$
On, contactor \square open	$\begin{array}{\|c\|} 132331 \\ \square \\ \hline 142432 \end{array}$	$\stackrel{1618}{\square}$	$\begin{gathered} 0608 \\ 05 \end{gathered}$	$\begin{gathered} 9698 \\ \square \\ \hline \square \end{gathered}$	$\frac{132331}{\square}$	$\begin{aligned} & 08 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 132331 \\ & \square \\ & 142432 \end{aligned}$		$\begin{aligned} & 5363 \\ & \hline \\ & \hline \end{aligned}$
On, contactor \quad 四 closed 01		$\begin{gathered} 1618 \\ \square \\ \hline \end{gathered}$	$\begin{gathered} 0608 \\ \square \\ \hline \end{gathered}$	$\begin{gathered} 9698 \\ \hline \square 5 \end{gathered}$		$\begin{aligned} & 08 \\ & \square \\ & \hline 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & \square \end{aligned}$	$\begin{array}{r} 132331 \\ \hline \quad \square \\ 142432 \end{array}$	$\frac{132331}{\square} \underset{142432}{\square}$	$\begin{aligned} & 5363 \\ & \hline 54 \quad 64 \end{aligned}$
Tripped on overload	$\begin{array}{\|c\|} 132331 \\ \mid \\ \mid 142432 \end{array}$	$\begin{aligned} & 1618 \\ & \square \\ & \hline \end{aligned}$	$\begin{gathered} 0608 \\ \square \\ 05 \end{gathered}$	$\begin{aligned} & 9698 \\ & \square \\ & \hline 95 \end{aligned}$		$\begin{aligned} & 08 \\ & \square \\ & 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \stackrel{9}{95} \end{aligned}$	$\begin{gathered} 132331 \\ \square \\ 142432 \end{gathered}$	$\begin{aligned} & 132331 \\ & \frac{\square}{142432} \end{aligned}$	$\begin{aligned} & 53 \quad 63 \\ & 54 \quad 64 \end{aligned}$
Off, after overload	$\begin{array}{\|l\|} 132331 \\ \square \\ \hline 142432 \end{array}$	$\begin{aligned} & 1618 \\ & \square \\ & \hline \end{aligned}$	$\begin{gathered} 0608 \\ \square \\ 05 \end{gathered}$	$\begin{gathered} 9698 \\ \hline \quad 95 \end{gathered}$		$\begin{aligned} & 08 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$	$\frac{132331}{\square} \square_{142432}$	$\begin{gathered} 132331 \\ \square \\ 142432 \end{gathered}$	$\begin{aligned} & 5363 \\ & \quad 5464 \end{aligned}$
Tripped on short circuit	$\begin{aligned} & 132331 \\ & \underset{142432}{\square} \end{aligned}$	$\begin{aligned} & 1618 \\ & \square \\ & \square \end{aligned}$	$\begin{aligned} & 0608 \\ & \hline \quad \square \\ & \hline 05 \end{aligned}$	$\begin{aligned} & 9698 \\ & \square \\ & \hline 95 \end{aligned}$	$\begin{aligned} & \frac{132331}{\square} \\ & 142432 \end{aligned}$	$\begin{aligned} & 08 \\ & 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \square \end{aligned}$	$\frac{132331}{\square}$	$\underbrace{132331}_{142432}$	$\begin{aligned} & 5363 \\ & \square \\ & 54 \quad 64 \end{aligned}$
Off after short circuit	$\frac{132331}{\mid a_{142432}}$	$\begin{aligned} & 1618 \\ & \square \\ & \hline \end{aligned}$		$\begin{gathered} 9698 \\ \square \\ \hline \square \end{gathered}$	$\begin{aligned} & 132331 \\ & \frac{\square}{142432} \end{aligned}$	$\begin{aligned} & 08 \\ & 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$	$\frac{132331}{\square}$	$\frac{132331}{\square \mid} \frac{\square}{142432}$	$\begin{array}{r} 5363 \\ \hline \quad 5464 \end{array}$
Manual reset	$\begin{array}{\|c} 132331 \\ \mid \\ \hline 142432 \end{array}$	$\begin{aligned} & 1618 \\ & \square \\ & \hline \end{aligned}$	$\begin{gathered} 0608 \\ \square \\ 05 \end{gathered}$	$\begin{aligned} & 9698 \\ & \square \\ & \hline \square \end{aligned}$	$\begin{aligned} & 132331 \\ & \square \\ & \hline 142432 \end{aligned}$	$\begin{aligned} & 08 \\ & \square \\ & 05 \end{aligned}$	$\begin{aligned} & 98 \\ & \square \\ & 95 \end{aligned}$	$\frac{132331}{\square}{ }_{142432}$	$\frac{132331}{\square \mid}$	$\begin{aligned} & 5363 \\ & \hline \\ & \hline \end{aligned}$

Protection Modules: LB•			
FIG. 6	Thermal and Magnetic Trip LB1	FIG. 7	Magnetic Trip Only LB6

Integral Self-Protected Starters
 Wiring Diagrams

Auxiliary Contact Blocks				
FIG. 1 For LD1 or LD4 and reverser LD5 (mounted on right) LA1 LC010, LA1 LC012 and LA1 LC020	For LD1 or LD4 and reverser LD5 (mounted on right) LA1 LC010, LA1 LC012 and LA1 LC020			
FIG. 2	For LD4 w/ isolating contacts (mounted on left) LA1 LC030			FIG. 4 LA1 LC031 Isolating contacts (mounted on left) LA1 LC031

Interface Modules
FIG. 7 LA1 LC180, LA1 LD180
FIG. 8 LA1 LC580, LA1 LD580

Integral Self-Protected Starters Wiring Diagrams

Add-on Blocks: LA1 LB0**	
FIG. 1 For LD	1 (mounted on right)
FIG. 2 For LD1 (mounted on left)	FIG. 3 For LD5 (mounted on left)

Voltage Converters: LA1 LC080 and LA1 LD080		
FIG. 10 Control by supply switching 24 or 48 V	FIG. 11	FIG. 12 Low voltage control 24 or 48 V
For 24 or 48 V Supply	For 110 V Supply	For 24 or 48 V Supply w/ Low Voltage Input

Type S AC Combination Magnetic Starters

Class 8538 and 8539
3-Phase, Size 0-5 (see pages 45 and 49 for Size 6)

Size 5

3-Pole, 3-Phase Combination Starters w/ Control Circuit Transformer and Primary Fuses:

 Class 8538 and 8539 Type S Form F4TFIG. 1

2-WIRE CONTROL

Wiring Diagram

Elementary Diagram
Size 0-4

Reduced Voltage Controllers
Class 8606

Autotransformer Type, Size 2-6

Reduced Voltage Autotransformer Controllers w/ Closed Transition Starting: Class 8606 Size 2-5

Reduced Voltage Autotransformer Controller w/ Closed Transition Starting: Class 8606 Size 6

Reduced Voltage Controllers
Class 8630
Wye-Delta Type, Size 1Y $\Delta-5 Y \Delta$

Reduced Voltage Controllers

Table 5 Motor Lead Connections

Part Winding Schemes	Lettered Terminals in Panel						Part Winding Schemes	Lettered Terminals in Panel					
	A	B	C	D	E	F		A	B	C	D	E	F
1/2 Wye or Delta 6 Leads	T1	T2	T3	T7	T8	T9	2/3 Wye or Delta 6 Leads	T1	T2	T9	T7	T8	T3
1/2 Wye 9 Leads ${ }^{[1]}$	T1	T2	T3	T7	T8	T9	2/3 Wye 9 Leads ${ }^{\text {[1] }}$	T1	T2	T9	T7	T8	T3
1/2 Delta 9 Leads ${ }^{[2]}$	T1	T8	T3	T6	T2	T9	2/3 Delta 9 Leads ${ }^{[2]}$	T1	T4	T9	T6	T2	T3

${ }^{[1]}$ Connect terminals T4, T5 and T6 together at terminal box. ${ }^{[2]}$ Connect terminals T 4 and $\mathrm{T} 8, \mathrm{~T} 5$ and $\mathrm{T} 9, \mathrm{~T} 6$ and T 7 together in 3 separate pairs at terminal box.

Part-Winding Reduced Voltage Controllers: Class 8640, Size 1PW-7PW

Reduced Voltage Controllers
Class 8650 and 8651
Wound-Rotor Type

Solid State Reduced Voltage Controllers
Class 8660
Type MH, MJ, MK and MM

Type MH (200 A), MJ (320 A), MK (500 A) and MM (750 A)

Type MH (200 A) w/ Shorting Contactor

Type MJ (320 A), MK (500 A) and MM (750 A) w/ Shorting Contactor

Type MH (200 A) w/ Isolation Contactor
FIG. 2

Type MJ (320 A), MK (500 A) and MM (750 A) w/ Isolation Contactor

Solid State Reduced Voltage Controllers
Class 8660
Type MH, MJ, MK and MM

Type S AC Reversing Magnetic Starters

Class 8736

3- and 4-Pole

FIG. 3

Wiring Diagram

Elementary Diagram

Wiring Diagram

Elementary Diagram

Size 0-4
FIG. 2

Size 5 Wiring Diagram
Starters for 2-Speed, 1-Winding (Consequent Pole), Constant or Variable Torque, 3-Phase Motors: Class 8810 Type S
FIG. 3

Wiring Diagram

Elementary Diagram

Size 0-2

Type S AC Reversing Magnetic Starters

Class 8810

Compelling Relay, Requiring Motor Starting in Low Speed

Form R2

FIG. 2

Accelerating Relay, Providing Timed Acceleration to Selected Speed

2-Speed Magnetic Starters and Multispeed Motor Connections

Class 8810

Special Control Circuits and 1- and 3-Phase Motor Connections

FIG. 2 Form CC17 R2R3

Multispeed Motor Connections: 3-Phase, 3-Speed Motors																				
FIG. 4							FIG. 5							FIG. 6						
	Speed	L1	L2	L3	Open	Together		Speed	L1	L2	L3	Open	Together		Speed	L1 L	L2	L3	Open	Together
	Low 2nd High	T1 T6 T11	$\begin{array}{\|c\|} \hline \text { T2 } \\ \text { T4 } \\ \text { T12 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{LS}, \mathrm{T7} \\ \mathrm{~T} \\ \mathrm{~T} 13 \\ \hline \end{array}$	All others ${ }^{\text {- }}$ All	(1)T1, $2, \mathrm{~T} 3, \mathrm{T7}$ -		Low 2nd High	$\begin{array}{c\|} \hline \mathrm{T} 1 \\ \mathrm{~T} 11 \\ \mathrm{~T} 11 \\ \mathrm{~T} 6 \\ \hline \end{array}$	$\begin{array}{c\|} \mathrm{L} 2 \\ \hline \text { T2 } \\ \text { T12 } \\ \text { T4 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { L3,T7 } \\ \text { T13 } \\ \text { T5 } \\ \hline \end{array}$	All others All others All others	- - $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 7$		Low 2nd High T		$\begin{array}{l\|l} \hline \mathrm{T} 2 & \mathrm{~T} \\ \mathrm{~T} 12 & \mathrm{~T} 1 \\ \mathrm{~T} 14 & \\ \hline \end{array}$		All others	- - $112, \mathrm{~T} 12, \mathrm{~T} 13, \mathrm{~T} 17$
	2 Windings, Constant Torque							2 Windings, Constant Torque							2 Windings, Constant Torque					
FIG. 7							FIG. 8							FIG. 9						
	Speed	L1	L2	L3	Open	Together		Speed	L1	L2	L3	Open	Together		Speed	L1	L2	L3	Open	Together
	Low 2nd High	T1 T6 T11	T2 T4 T12	T3 T5 T13	All others All others All others	$\overline{-}{ }^{\text {T1, } 2, \mathrm{~T} 3}$ -		Low 2nd High	T1 T11 T6	T2 T12 T4	T3 T13 T5	All others All others All others	$\begin{gathered} - \\ \overline{\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3} \end{gathered}$		Low 2nd High	$\begin{array}{c\|} \hline \text { T1 } \\ \text { T11 } \\ \text { T16 } \end{array}$	T2 T12 T14	T3 T13 T15	All others All others All others	
	2 Windings, Variable Torque							2 Windings, Variable Torque							2 Windings, Variable Torque					

Programmable Lighting Controllers

Class 8865

Load Connections for AC Lighting Contactors: Class 8903	
FIG. 1 1-Phase, 2-Wire, Single Load	FIG. 2 1-Phase, 2-Wire, Multiple Loads
FIG. 3 1-Phase, 3-Wire, Loads Connected Line-to-Neutral	FIG. 4 1-Phase, 3-Wire, Load Connected Line-to-Line
FIG. 5 $\mathrm{V}_{\text {load }}=\frac{\mathrm{V}_{\text {line-to-line }}}{1.732}$ 3-Phase, 3-Wire, Wye-Connected Load	FIG. 6 $\mathrm{V}_{\text {load }}=\mathrm{V}_{\text {line-to-line }} \quad \frac{\mathrm{I}_{\text {load }}}{1.732}=\mathrm{I}_{\text {contacts }}$ 3-Phase, 3-Wire, Delta-Connected Load
FIG. 7 3-Phase, 4-Wire, Loads Connected Line-to-Neutral	Application Limits: 1. Voltage between line side conductors must not exceed line-to-line voltage rating of contactor. 2. $\mathrm{V}_{\text {load }}$ must not exceed volts-per-load rating of contactor. 3. Line current carried by any contact must not exceed ampere rating of contactor. For contact ratings, refer to the Square D Digest.

AC Lighting Contactors

Class 8903

Control Circuit Connections

FIG. 5

QWIK-STOP ${ }^{\circledR}$ Electronic Motor Brake: Class 8922

FIG. 5

[1] Contacts 15 and 18 close when L1 and L2 are energized.
[2] When controlling electronic motor brake ETB 10/18 with a PLC (programmable logic control), terminals Xo-Xo must be jumpered.
[3] Semiconductor fuses.
${ }^{[4]}$ Connection for ETBS only.

Type ETB10, ETB18 and ETBS18 w/ Internal Braking Contactor
FIG. 6

[2] When controlling electronic motor brake ETB 20/800 with a PLC (programmable logic control), terminals Xo-Xo must be jumpered.
[3] Semiconductor fuses.
${ }^{[4]}$ Connection for ETBS only.

Electronic Motor Brakes, Duplex Motor Controllers and Fiber Optic Transceivers Class 8922, 8941 and 9005

QWIK-STOP ${ }^{\circledR}$ Electronic Motor Brake: Class 8922 Type ETBC
FIG. 1

[1] To control electronic motor brake ETBC with input B+/B-, terminals 3 and 4 must be jumpered.
${ }^{[2]}$ Semiconductor fuses.

Type ETBC

AC Duplex Motor Controller: Class 8941

FIG. 2

Elementary Diagram for Duplex Motor Controller w/ Electric Alternator

XS Tubular Inductive Proximity Sensors		
FIG. 1 2-Wire DC, Non-Polarized	FIG. 2 2-Wire	
FIG. 3 3-Wire DC, N.O. or N.C.	FIG. 4 3-Wire DC, N.O. and N.C., Complementary	3-Wire DC, Selectable PNP/NPN, N.O./N.C.

XSD Rectangular Inductive Proximity Sensors		
FIG. 12 2-Wire DC, Non-Polarized	FIG. 13 2-Wire AC, Programmable N.O. or N.C.	FIG. 14 3-Wire DC, N.O. or N.C.

Inductive and Capacitive Proximity Sensors

XS Tubular Inductive Proximity NAMUR Sensors			
FIG. 1	Object present Object absent Non-Intrinsical	Safe Applications (Normal Safe Zone), ected to a Solid State Input	FIG. 2 Wiring diagram With XZD Power Supply/Relay Amplifier Unit

XTA Tubular Capacitive Proximity Sensors	
FIG. 5 * Ground for XTA A115 only 2-Wire AC	FIG. 6 3-Wire DC

Magnet Actuated Proximity Sensors and Photoelectric Sensors

SG Magnet Actuated Proximity Sensors, Surface Mount Style

FIG. 1	FIG. 2	FIG. 3
SGA 8016, SGA 8031, SGA 8182, SGA 8053, SGA 8176, SGA 8177, SG0 8168 and SG08239	SGB 8175	SG2 8195

SG Magnet Actuated Proximity Sensors, Limit Switch Style		
FIG. 4 SG0 8003, SG1 8004, SGA 8005 and SGA 8040	FIG. 5 SG0 L8003 and SG1 L8004	FIG. 6 SGC 8027 and SGC 8025
FIG. 7 SG0 B8114, SG1 B8147, SG0 BL8114, SG0 BL8147 and SGC 8142-T-P	FIG. 8	SG1 8056 is normally closed. Connect red terminal (+) to power source. Connect minus (-) terminal to load. Housing must be connected to minus. 8056

SG Magnet Actuated Proximity Sensors, Tubular Style						
FIG. 9	L1					
SGA 8057, SGA 8189, SGA 8072, SGA 8179,						
SGA 8180 and SGA 8038						

SG Magnet Actuated Proximity Sensors, Maintained Contact		
$\text { FIG. } 11$	SGA 8018, SGO 8026	FIG. 12

ST Grounded Probe Switch		
FIG. 13 Target connected to ground Cable Wiring	FIG. 14 Target connected to ground. Housing must be grounded for proper operation. Terminal strip Wiring	ST switches may be wired in series or parallel. For series operation, connect red lead (terminal 4) to black lead (terminal 1) of other switch. The voltage drop across each switch (in the closed state) does not exceed 2 VAC.

XUB Short Range Tubular Photoelectric Sensors			
FIG. 15	2-Wire AC	AC Emitter	FIG. 17 DC Emitter

XUJ Compact High Performance Photoelectric Sensors

Photoelectric Sensors and Security Light Barriers XUE, XUR, XUD, XUG and XUE S

XUE S Security Light Barriers

Limit Switches

Class 9007
FIG. 1
FIG. $\mathbf{2}$

Limit Switches: Class 9007 Type XA	
FIG. 7	FIG. 8

Limit Switches: Class 9007 Type AW		
FIG. 1 Type AW12 and AW14	FIG. 2 CW Operation Only Type AW18	CCW Operation Only
FIG. 3 ${ }^{[1]}$ If lever arm is placed at same end of box as conduit, N.O. contacts become N.C. and vice versa. Type AW16 w/ Lever Arm Opposite Conduit Hole ${ }^{[1]}$	FIG. 4 ${ }^{[1]}$ If lever arm is placed at same end of box as conduit, N.O. contacts become N.C. and vice versa. Type AW19 w/ Lever Arm Opposite Conduit Hole ${ }^{[1]}$	FIG. 5 MUST BE SAME POLARITY Type AW32, AW34, AW42 and AW44
FIG. 6 $\begin{aligned} & \text { MUST BE } \\ & \text { SAME } \\ & \text { POLARITY } \\ & 1 \begin{array}{c} 1 \\ 6 \end{array} \\ & 0 \\ & 0 \end{aligned}$ Type AW36 and AW46	FIG. 7 Type AW38 and AW48	FIG. 8 Type AW39 and AW49

Class 9007 Type SG - GATE GARD ${ }^{\text {TM }}$ Switch

Type SGS1DK

FIG. 10

Type SGP1

Limit Switches and Safety Interlocks

XCK Limit Switches				

XCK Safety Interlocks			
FIG. 4 SPDT, Positive Opening, Slow-Make Slow-Break	FIG. 5 SPDT, w/ 24 VDC LED, Positive Opening, Slow-Make Slow-Break	FIG. 6 SPDT, w/ 2 Pilot Lights, Positive Opening, Slow-Make Slow-Break	Note: N.O. and N.C. contacts are shown with key inserted and fully engaged.

Contact Blocks for XY2CE Limit Switches				
FIG. 7	FIG. 8	FIG. 9	FIG. 10	FIG. 11
XEN P2151, Isolated N.C. and N.O.	XEN P2141, Isolated N.C. and N.O.	XEN P2051, N.C./N.O., 12 and 14 same polarity	Indicator Light, Direct	Indicator Light w/ Resistance

MS Miniature Limit Switches	
FIG. 12	FIG. 13

FIG.
Commercial Pressure Switches:
Class 9013 Type CS

FIG. 7 C

Level Sensors and Electric Alternators

Class 9034 and 9039

Pneumatic Timing Relays: Class 9050: Type AO					
FIG. 1 Type AO10E	FIG. 2 $\overbrace{0}^{\circ}$ Type AO10D	FIG. 3 Type AO20E	FIG. 4 Type AO20D	FIG. 5 Type AO110DE	FIG. 6 Type AO120DE
FIG. 7 Type AO11E	FIG. 8 $\begin{aligned} & \operatorname{To}^{A} \\ & 0-0 \\ & 0-1 \vdash^{B} \\ & 0-1 \end{aligned}$ Type AO11D	FIG. 9 Type AO21E	FIG. 10 Type AO21D	FIG. 11 Type AO111DE	FIG. 12 Type AO121DE
FIG. 13 Type AO12E	FIG. 14 Type AO12D	FIG. 15 Type AO22E	FIG. 16 Type AO22D	FIG. 17 Type AO112DE	FIG. 18 Type AO122DE
FIG. 19 Type AO210DE	FIG. 20 Type AO211DE	FIG. 21 Type AO212DE	FIG. 22 Type AO220DE	FIG. 23 Type AO221DE	FIG. 24 Type AO222DE
Pneumatic Timing Relays: Class 9050: Type HO		Pneumatic Timing Relays: Class 9050:Types B and C			
FIG. 25 Type HO10E, On Delay	FIG. 26 Type HO10D, Off Delay	FIG. 27 品		FIG. 28	

Pneumatic Timing Relays and Solid State Industrial Timing Relays

Class 9050

Solid State Industrial Timing Relays: Class 9050 Types FS and FSR
FIG. 6

Elementary Diagram

FIG. 7

Wiring Diagram

Solid State Industrial Timing Relays: Class 9050 Type FT
FIG. 8

FIG. 9 AC Supply Voltage

Solid State Industrial Timing Relays:
Class 9050 Type JCK

FIG. 1

Control Power
Polarity markings are for DC units only. JCK 60 is AC only.

Type JCK 11-19, 31-39 and 51-60

FIG. 2

Polarity markings are for DC units only.
Terminals 5 and 10 are internally jumpered. Applying power to terminal 7 or jumpering from terminal 5 to 7 through an external contact initiates the timer.

Type JCK 21-29 and 41-49

FIG. 3

IExternal Initiating Contact (used in one-shot and off-delay mode only)

Control Power

Type JCK 70

Solid State Timers: Class 9050 Type D			
FIG. 4	FIG. 5	FIG. 6	FIG. 7
Type DER, DZM, DTR, DWE, DEW and DBR	Type DERP, DERLP, DWEP and DZMP	Type DAR	Type DARP

Solid State Timers: Class 9050 Type M		
FIG. 8	FIG. 9	
Type MAN, MBR, MER, MEW, MTG, MWE and MZM		pe MAR

Table 6 Enclosures for Non-Hazardous Locations

Provides Protection Against	NEMA Type 1	NEMA Type $3^{[1]}$	NEMA Type 3R ${ }^{[1]}$	$\begin{gathered} \text { NEMA } \\ \text { Type 4 }{ }^{[2]} \end{gathered}$	NEMA Type 4X ${ }^{[2]}$	Type 5	$\begin{gathered} \text { NEMA } \\ \text { Type } 12{ }^{[3]} \end{gathered}$	Type 12K	NEMA Type 13
Accidental contact w/ enclosed equipment	Yes								
Falling dirt	Yes								
Falling liquids and light splashing	\ldots	Yes	Yes	Yes	Yes	...	Yes	Yes	Yes
Dust, lint, fibers and flyings	\ldots	\ldots	...	Yes	Yes	Yes	Yes	Yes	Yes
Hosedown and splashing water	\ldots	\ldots	...	Yes	Yes	\ldots	...	\ldots	
Oil and coolant seepage	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	Yes	Yes	Yes
Oil and coolant spraying and splashing	\ldots	\ldots	\ldots	\ldots	Yes
Corrosive agents	\ldots	\ldots	\ldots	\ldots	Yes	\ldots	\ldots	\ldots	\ldots
Rain, snow and sleet ${ }^{[4]}$	\ldots	Yes	Yes	[5]	Yes	\ldots	\ldots	\ldots	...
Windblown dust	...	Yes	...	[5]	Yes	Yes	...	\ldots	\ldots
${ }^{[1]}$ Intended for outdoor use. [2] Intended for indoor and outdoor use. ${ }^{[3]}$ Square D Industrial Control design NEMA Type 12 enclosures may be field modified for outdoor applications. ${ }^{[4]}$ External operating mechanisms are not required to be operable when the enclosure is ice covered. ${ }^{[5]}$ Square D Industrial Control design NEMA Type 4 enclosures provide protection against these environments.									

Table 7 Enclosures for Hazardous Locations

Provides Protection Against	Class ${ }^{[1]}$	Group [1]	Enclosure					
			NEMA Type 7			NEMA Type 9		
			7B	7C	7D	9E	9F	9G
Hydrogen, manufactured gas	1	B	Yes	\ldots	\ldots	...	\ldots	\ldots
Ethyl ether, ethylene, cyclopropane	1	C	Yes	Yes	\ldots	\ldots	\ldots	\ldots
Gasoline, hexane, naphtha, benzine, butane, propane, alcohol, acetone, benzol, natural gas, lacquer solvent	1	D	Yes	Yes	Yes	\ldots	\ldots	\ldots
Metal dust	II	E	\ldots	\ldots	\ldots	Yes	\ldots	\ldots
Carbon black, coal dust, coke dust	II	F	...	\ldots	Yes	\ldots
Flour, starch, grain dust	II	G	...	\ldots	...	\ldots	Yes	Yes
${ }^{[1]}$ As described in Article 500 of the National Electrical Code.								

Ampacity Based on NEC ${ }^{\circledR}$ Table 310-16 - Allowable Ampacities of Insulated Conductors Rated 0-2000 Volts, Not More Than Three Conductors in Raceway or Cable. Based on $30^{\circ} \mathrm{C}$ Ambient Temperature. Trade Size of Conduit or Tubing Based on NEC Chapter 9, Table 1 and Tables 3A, 3B, 3C, 4 and 5B. Refer to Chapter 9 for Maximum Number of Conductors in Trade Sizes of Conduit or Tubing. Dimensions of Insulated Conductors for Conduit Fill Determined from NEC Chapter 9 Tables 5 and 5A.

For information on temperature ratings of terminations to equipment, see NEC Section 110-14c. Underlined conductor insulation types indicates ampacity is for WET locations. See NEC Table 310-13.

Table 8 Conductor Ampacity based on NEC Table 310-16

COPPER CONDUCTORS									ALUMINUM CONDUCTORS								
Wire Size AWG kcmil		$\begin{aligned} & 75 \\ & \text { Conduc } \\ & \left\lvert\, \begin{array}{c} \text { THHW, } \\ \text { RW, } \\ \text { Conduit } \\ 3 W \end{array}\right. \end{aligned}$	${ }^{\circ} \mathrm{C}(167$ ctor Insu , THW, USE	${ }^{\circ} \mathrm{F}$) lation ${ }^{[1]}$ THWN Conduit 3W	XHHW Conduit $4 W^{[2]}$		${ }^{\circ} \mathrm{C}(194$ ctor Insu THHN Conduit 3W	${ }^{\circ} \mathrm{F}$) ation ${ }^{[1]}$ XHHW Conduit $4 W^{[2]}$	Wire Size AWG kcmil		75 Condu $\begin{gathered}\text { THHW } \\ \text { Conduit } \\ 3 W\end{gathered}$	$5^{\circ} \mathrm{C}(167$ ctor Insu , THW, SE Conduit 4W [2]	${ }^{\circ} \mathrm{F}$) lation ${ }^{[1]}$ XH Conduit 3W	HW Conduit 4W [2]		${ }^{\circ} \mathrm{C}(194$ tor Insu THHN,	${ }^{\circ} \mathrm{F}$) lation ${ }^{[1]}$ XHHW Conduit $4 W^{[2]}$
†14	20	\ldots	\ldots	1/2	1/2	25	1/2	1/2	\ldots								
$\dagger 12$	25	\ldots	\ldots	1/2	1/2	30	1/2	1/2	$\dagger 12$	20	\ldots	\ldots	1/2	1/2	25	1/2	1/2
$\dagger 10$	35	\ldots	\ldots	1/2	1/2	40	1/2	1/2	†10	30	\ldots	\ldots	1/2	1/2	35	1/2	1/2
8	50	3/4	1	$1 / 2{ }^{[3]}$	3/4	55	$1 / 2{ }^{[3]}$	3/4	8	40	3/4	3/4	1/2	3/4	45	1/2	3/4
6	65	1	1	3/4	$3 / 4{ }^{[4]}$	75	3/4	$3 / 4{ }^{[4]}$	6	50	3/4	1	3/4	3/4	60	3/4	3/4
4	85	1	1-1/4	1	1	95	1	1	4	65	1	1	3/4	1	75	3/4	1
3	100	1-1/4	1-1/4	1	1-1/4	110	1	1-1/4	3	75	\ldots	\ldots	\ldots	\ldots	85	\ldots	\ldots
2	115	1-1/4	1-1/4	1	1-1/4	130	1	1-1/4	2	90	1	1-1/4	1	1-1/4	100	1	1-1/4
1	130	1-1/4	1-1/2	1-1/4	1-1/2	150	1-1/4	1-1/2	1	100	1-1/4	1-1/2	1-1/4	1-1/2	115	1-1/4	1-1/2
1/0	150	1-1/2	2	1-1/4	1-1/2	170	1-1/4	1-1/2	1/0	120	1-1/4	1-1/2	1-1/4	1-1/2	135	1-1/4	1-1/2
2/0	175	1-1/2	2	1-1/2	2	195	1-1/2	2	2/0	135	1-1/2	2	1-1/4	1-1/2	150	1-1/4	1-1/2
3/0	200	2	2	1-1/2	2	225	1-1/2	2	3/0	155	1-1/2	2	1-1/2	2	175	1-1/2	2
4/0	230	2	2-1/2	2	2	260	2	2	4/0	180	2	2	1-1/2	2	205	1-1/2	2
250	255	2-1/2	2-1/2	2	2-1/2	290	2	2-1/2	250	205	2	2-1/2	2	2	230	2	2
300	285	2-1/2	3	2	2-1/2	320	2	2-1/2	300	230	2	2-1/2	2	2-1/2	255	2	2-1/2
350	310	2-1/2	3	2-1/2	3	350	2-1/2	3	350	250	2-1/2	3	2-1/2	3	280	2-1/2	3
400	335	3	3	2-1/2	3	380	2-1/2	3	400	270	2-1/2	3	2-1/2	$2-1 / 2^{[5]}$	305	2-1/2	$2-1 / 2^{[5]}$
500	380	3	3-1/2	3	3	430	3	3	500	310	3	3	2-1/2	3	350	2-1/2	3
600	420	3	3-1/2	3	3-1/2	475	3	3-1/2	600	340	3	3-1/2	3	3	385	3	3
700	460	3-1/2	4	3	3-1/2	520	3	3-1/2	700	375	3	3-1/2	3	3-1/2	420	3	3-1/2
750	475	3-1/2	4	3-1/2	4	535	3-1/2	4	750	385	3	3-1/2	3	3-1/2	435	3	3-1/2
800	490	3-1/2	4	3-1/2	4	555	3-1/2	4	800	395	\ldots	\ldots	\ldots	\ldots	450
900	520	4	5	3-1/2	4	585	3-1/2	4	900	425	\ldots	\ldots	\ldots	\ldots	480		\ldots
1000	545	4	5	3-1/2	5	615	3-1/2	5	1000	445	3-1/2	4	3-1/2	4	500	3-1/2	4

[1] Unless otherwise permitted in the Code, the overcurrent protection for conductor types marked with an with an obelisk (\dagger) shall not exceed 15 A for No. 14, 20 A for No. 12 and 30 A for No. 10 copper, or 15 A for No. 12 and 25 A for No. 10 aluminum after any correction factors for ambient temperature and number of conductors have been applied
[2] On a 4-wire, 3-phase wye circuit where the major portion of the load consists of nonlinear loads such as electric discharge lighting, electronic computer/data processing, or similar equipment
there are harmonic currents present in the neutral conductor and the neutral shall be considered to be a current-carrying conductor.

NEC is a Registered Trademark of the National Fire Protection Association.
[3] \#8 XHHW copper wire requires $3 / 4$ " conduit for $3 W$.
[4] \#6 XHHW copper wire requires 1 " conduit for $3 \varnothing 4 \mathrm{~W}$.
[5] 400 kcmil aluminum wire requires 3 " conduit for $3 \varnothing 4 \mathrm{~W}$.

Ampacity Correction Factors:

For ambient temperatures other than $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, multiply the ampacities listed in Table 8 by the appropriate factor listed in Table 9 .
Adjustment Factors:
Where the number of current-carrying conductors in a raceway or cable exceeds three, reduce the allowable ampacities as shown in Table 9 .

Table 9 Ampacity Correction Factors

Ambient Temperature $\left({ }^{\circ} \mathbf{C}\right)$	$75^{\circ} \mathbf{C}\left(167{ }^{\circ} \mathrm{F}\right)$ Conductors	$90^{\circ} \mathbf{C}\left(194{ }^{\circ} \mathrm{F}\right)$ Conductors	Ambient Temperature $\left({ }^{\circ} \mathrm{F}\right)$
$21-25$	1.05	1.04	$70-77$
$26-30$	1.00	1.00	$78-86$
$31-35$.94	.96	$87-95$
$36-40$.88	.91	$96-104$
$41-45$.82	.87	$105-113$
$46-50$.75	.82	$114-122$
$51-55$.67	.76	$123-131$
$56-60$.58	.71	$132-140$
$61-70$.33	.58	$141-158$
$71-80$	\ldots	.41	$159-176$

Table 10 Adjustment Factors

No. of Current-Carrying Inductors	Values in Tables as Adjusted for Ambient Temperature
$4-6$	80%
$7-9$	70%
$10-20$	50%
$21-30$	45%
$31-40$	40%
41 and above	35%
For exceptions, see exceptions to Note 8 of NEC^{\circledR} Table 310-16.	

Ratings for 120/240 V, 3-Wire, Single-Phase Dwelling Services:
The ratings in Table 11 are permitted ratings for dwelling unit service and feeder conductors which carry the total load of the dwelling. The grounded conductor (neutral) shall be permitted to be not more than 2 AWG sizes smaller than the ungrounded conductors, provided the requirements of 215-2, 220-22 and 230-42 are met.

Table 11 Ratings for $\mathbf{1 2 0 / 2 4 0}$ V, 3-Wire, Single-Phase Dwelling Services - see NEC 310-16 Note 3

Rating (A)	100	110	125	150	175	200	225	250	300	350	400
Copper	4 AWG	3 AWG	2 AWG	1 AWG	$1 / 0$ AWG	$2 / 0$ AWG	$3 / 0$ AWG	$4 / 0$ AWG	250 kcmil	350 kcmil	400 kcmil
Aluminum	2 AWG	1 AWG	$1 / 0$ AWG	$2 / 0$ AWG	$3 / 0$ AWG	$4 / 0$ AWG	250 kcmil	300 kcmil	350 kcmil	500 kcmil	600 kcmil

NEC 240-3 Protection of Conductors:
Conductors, other than flexible cords and fixture wires, shall be protected against overcurrent in accordance with their ampacities as specified in NEC Section 310-15, unless otherwise permitted in parts (a) through (m).

NEC 220-3 (a) Continuous and Noncontinuous Loads:
The branch circuit rating shall not be less than the noncontinuous load plus 125% of the continuous load (see exception for 100% rated devices).
NEC 220-10 (b) Continuous and Noncontinuous Loads:
Where a feeder supplies continuous loads or any combination of continuous and noncontinuous loads, the rating of the overcurrent device shall not be less than the noncontinuous load plus 125% of the continuous load (see exception for 100% rated devices).

NEC 430-22 (a) Single Motor Circuit Conductors:
Branch circuit conductors supplying a single motor shall have an ampacity not less than 125% of the motor full-load current rating (see exceptions).

NEC is a Registered Trademark of the National Fire Protection Association.

Table 12 AWG and Metric Wire Data

AWG Size	Conductor dia. (mm)	Conductor dia. (in)	Resistance Ohm per ft	$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ Ohm per m	AWG Size	Conductor dia. (mm)	Conductor dia. (in)	Resistance Ohm per ft	$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ Ohm per m
29		. 01126	. 08180	. 2684	13	1.900	. 07480	. 001853	. 006081
	. 315	. 01240	. 06743	. 2212		2.000	. 07874	. 001673	. 005488
28		. 01264	. 06491	. 2130	12		. 08081	. 001588	. 005210
	. 355	. 01398	. 05309	. 1742		2.120	. 08346	. 001489	. 004884
27		. 01420	. 05143	. 1687		2.240	. 08819	. 001333	. 004375
	. 400	. 01575	. 04182	. 1372	11		. 09074	. 001260	. 004132
26		. 01594	. 04082	. 1339		2.360	. 09291	. 001201	. 003941
	. 450	. 01772	. 03304	. 1084		2.500	. 09843	. 001071	. 003512
25		. 01790	. 03237	. 1062	10		. 1019	. 0009988	. 003277
	. 500	. 01969	. 02676	. 08781		2.650	. 1043	. 0009528	. 003126
24		. 02010	. 02567	. 08781		2.800	. 1102	. 0008534	. 002800
	. 560	. 02205	. 02134	. 07000	9		. 1144	. 0007924	. 002500
23		. 02257	. 02036	. 06679		3.000	. 1181	. 0007434	. 002439
	. 630	. 02480	. 01686	. 05531		3.150	. 1240	. 0006743	. 002212
22		. 02535	. 01614	. 05531	8		. 1285	. 0006281	. 002061
	. 710	. 02795	. 01280	. 04201		3.350	. 1319	. 0005662	. 001956
21		. 02846	. 01280	. 04201		3.550	. 1398	. 0005309	. 001742
	. 750	. 02953	. 01190	. 03903	7		. 1443	. 0004981	. 001634
	. 800	. 03150	. 01045	. 03430		3.750	. 1476	. 0004758	. 001561
20		. 03196	. 01015	. 03331		4.000	. 1575	. 0004182	. 001372
	. 850	. 03346	. 009261	. 05038	6		. 1620	. 0003952	. 001296
	. 900	. 03543	. 008260	. 02642		4.250	. 1673	. 0003704	. 001215
19		. 03589	. 008051	. 02642		4.500	. 1772	. 0003304	. 001084
	. 950	. 03740	. 007414	. 02432	5		. 1819	. 0003134	. 001028
	1.000	. 03937	. 006991	. 02195		4.750	. 1870	. 0002966	. 0009729
18		. 04030	. 006386	. 02095		5.000	. 1968	. 0002676	. 0008781
	1.060	. 04173	. 005955	. 01954	4		. 2043	. 0002485	. 0008152
	1.120	. 04409	. 005334	. 01750		5.600	. 2205	. 0002134	. 0007000
17		. 04526	. 005063	. 01661	3		. 2294	. 0001971	. 0006466
	1.180	. 04646	. 004805	. 01577		6.300	. 2480	. 0001686	. 0005531
	1.250	. 04921	. 004282	. 01405	2		. 2576	. 0001563	0005128
16		. 05082	. 004016	. 01317		7.100	. 2795	. 0001327	. 0004355
	1.320	. 05197	. 003840	. 01260	1		. 2893	. 0001239	. 0004065
	1.400	. 05512	. 004016	. 01317		8.000	. 3150	. 0001045	. 0003430
15		. 05707	. 003414	. 01045	0		. 3249	. 00009825	. 0003223
	1.500	. 05906	. 002974	. 009756		9.000	. 3543	. 00008260	. 0002710
	1.600	. 06299	. 002526	. 008286	2/0		. 3648	. 00007793	. 0002557
14		. 06408	. 002315	. 007596		10.000	. 3937	. 00006691	. 0002195
	1.700	. 06693	. 002315	. 007596	3/0		. 4096	. 00006182	. 0002195
	1.800	. 07087	. 002065	. 006775	4/0		. 4600	. 00004901	. 0001608
13		. 07196	. 002003	. 006571		11.800	. 4646	. 00004805	. 0001577

Table 13 Electrical formulas for Amperes, Horsepower, Kilow atts and KVA

To find	Single phase	3-phase	Direct current
Kilowatts	$1 \times E \times P F$	$\underline{1 \times E \times 1.73 \times \text { PF }}$	IxF
		1000	1000
KVA	$\frac{1 \times E}{1000}$	$\frac{1 \times E \times 1.73}{1000}$	-
Horsepower (output)	$\frac{I \times E \times \% \text { Eff } \times P F}{746}$	$\frac{I \times E \times 1.73 \times \% \mathrm{Eff} \times \mathrm{PF}}{746}$	$\frac{I \times E \times \% E f f}{746}$
Amperes when Horsepower is known	$E \frac{\mathrm{HP} \times 746}{\mathrm{E} \times \mathrm{Eff} \times \mathrm{PF}}$	$\frac{\mathrm{HP} \times 746}{1.73 \times \mathrm{E} \times \% \mathrm{Eff} \times \mathrm{PF}}$	$\frac{\mathrm{HP} \times 746}{\mathrm{E} \times \% \mathrm{Eff}}$
Amperes when Kilowatts is known	$\frac{\mathrm{KW} \times 1000}{\mathrm{E} \times \mathrm{PF}}$	$\frac{\mathrm{KW} \times 1000}{1.73 \times \mathrm{E} \times \mathrm{PF}}$	$\frac{\mathrm{KW} \times 1000}{\mathrm{E}}$
Amperes	$\frac{\text { KVA } \times 1000}{E}$	$\frac{\mathrm{KVA} \times 1000}{1.73 \times \mathrm{E}}$	-
E=Volts I = Amperes	\%Eff = Percent efficiency	PF = Power factor HP = Horsepower	KVA = Kilovolt-Amps

Average Efficiency and Power Factor Values of Motors:
When actual efficiencies and power factors of the motors to be controlled are not known, the following approximations may be used:
Efficiencies:

DC motors, 35 hp and less:	80\% to 85%
DC motors, above 35 hp :	85\% to 90\%
Synchronous motors (at 100\% PF):	92\% to 95\%
"Apparent" efficiencies (Efficiency x PF):	
3 -phase induction motors, 25 hp and less:	70\%
3 -phase induction motors above 25 hp :	80\%

Table 14 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for NonpluggIng and Nonjogging Duty

Size of Controller	Continous Current Rating (A)	Horsepower at ${ }^{[1]}$				Service-Limit Current Rating (A)
		60 Hz 200 V	60 Hz 230 V	50 Hz 380 V	$\begin{gathered} 60 \mathrm{~Hz} \\ 460 \text { or } 575 \mathrm{~V} \end{gathered}$	
00	9	1-1/2	1-1/2	1-1/2	2	11
0	18	3	3	5	5	21
1	27	7-1/2	7-1/2	10	10	32
2	45	10	15	25	25	52
3	90	25	30	50	50	104
4	135	40	50	75	100	156
5	270	75	100	150	200	311
6	540	150	200	300	400	621
7	810	-	300	-	600	932

${ }^{[1]}$ These horsepower ratings are based on typical locked-rotor current ratings. For motors having higher locked-rotor currents, use a larger controller to ensure its locked-rotor current rating is not exceeded.

Table 15 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for Plug-Stop, Plug-Reverse or Jogging Duty

Size of Controller	Continous Current Rating (A)	Horsepower at ${ }^{[1]}$				Service-Limit Current Rating (A)
		60 Hz 200 V	60 Hz 230 V	50 Hz 380 V	$\begin{gathered} 60 \mathrm{~Hz} \\ 460 \text { or } 575 \mathrm{~V} \end{gathered}$	
0	18	1-1/2	1-1/2	1-1/2	2	21
1	27	3	3	5	5	32
2	45	7-1/2	10	15	15	52
3	90	15	20	30	30	104
4	135	25	30	50	60	156
5	270	60	75	125	150	311
6	540	125	150	250	300	621

${ }^{[1]}$ These horsepower ratings are based on typical locked-rotor current ratings. For motors having higher locked-rotor currents, use a larger controller to ensure its locked-rotor current rating is not exceeded.

Table 16 Power Conversions

From	to $\mathbf{~ k W}$	to $\mathbf{P S}$	to $\mathbf{~ h p}$	to ft -lb/s
1 kW (kilowatt) $=10^{10} \mathrm{erg} / \mathrm{s}$	1	1.360	1.341	737.6
1 PS (metric horsepower)	0.7355	1	0.9863	542.5
1 hp (horsepower)	0.7457	1.014	1	550.0
$1 \mathrm{ft}-\mathrm{lb} / \mathrm{s}$ (foot-pound per sec)	1.356×10^{-3}	1.843×10^{-3}	1.818×10^{-3}	1

From single products to complete systems, look to Square D.

Square DCompany is a leading manufacturer and supplier of electrical distribution, automation and industrial control products. The full line of Square D and Telemecanique brand products are available from an extensive network of Square D distributors located throughout North America.

Square D Company is part of Groupe
Schneider, an $\$ 11$ billion global manufacturer of electrical distribution, automation and industrial equipment, a company whose primary business resides in those markets.

Square D has been serving industrial and construction markets, as well as public utilities, individual consumers and government agencies for over 85 years. We offer unsurpassed quality, innovative design and a committed staff of trained sales representatives and service technicians willing to stand behind every product we sell.

For further information on how we can help fill your electrical needs, call your local Square D field representative or authorized Square D distributor.

